Product of Trigonometric Ratios in Terms of Their Sum
The value of ...
Question
The value of sin17π36cos11π36cos13π36sin11π36sin13π36cos17π36 is
A
14
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
116
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
164
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D164 sin17π36cos11π36cos13π36sin11π36sin13π36cos17π36=(sin11π36cos11π36)(sin13π36cos13π36)(sin17π36cos17π36)=123[sin22π36sin26π36sin34π36]=18[sin11π18sin13π18sin17π18]=18[sin(π−7π18)sin(π−5π18)sin(π−π18)]=18[sin7π18sin5π18sinπ18]=18[sin(π2−2π18)sin(π2−4π18)sin(π2−8π18)]=18[cos2π18cos4π18cos8π18]=18[cosπ9cos2π9cos4π9]=sin8π98×23sinπ9=sin(π−π9)64sinπ9=164
Alternate solution : Same steps are followed till sin17π36cos11π36cos13π36sin11π36sin13π36cos17π36=(sin11π36cos11π36)(sin13π36cos13π36)(sin17π36cos17π36)=123[sin22π36sin26π36sin34π36]=18[sin11π18sin13π18sin17π18]=18[sin(π−7π18)sin(π−5π18)sin(π−π18)]=18[sin7π18sin5π18sinπ18]=18[sin10∘sin50∘sin70∘]=18[sin10∘sin(60∘−10∘)sin(60∘+10∘)]=18[14sin(3×10∘)]=164