wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of sin17π36cos11π36cos13π36sin11π36sin13π36cos17π36 is

A
14
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
116
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
164
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 164
sin17π36cos11π36cos13π36sin11π36sin13π36cos17π36=(sin11π36cos11π36)(sin13π36cos13π36)(sin17π36cos17π36)=123[sin22π36sin26π36sin34π36]=18[sin11π18sin13π18sin17π18]=18[sin(π7π18)sin(π5π18)sin(ππ18)]=18[sin7π18sin5π18sinπ18]=18[sin(π22π18)sin(π24π18)sin(π28π18)]=18[cos2π18cos4π18cos8π18]=18[cosπ9cos2π9cos4π9]=sin8π98×23sinπ9=sin(ππ9)64sinπ9=164

Alternate solution :
Same steps are followed till
sin17π36cos11π36cos13π36sin11π36sin13π36cos17π36=(sin11π36cos11π36)(sin13π36cos13π36)(sin17π36cos17π36)=123[sin22π36sin26π36sin34π36]=18[sin11π18sin13π18sin17π18]=18[sin(π7π18)sin(π5π18)sin(ππ18)]=18[sin7π18sin5π18sinπ18]=18[sin10sin50sin70]=18[sin10sin(6010)sin(60+10)]=18[14sin(3×10)]=164

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon