The correct option is A 516
π5,4π5 and 2π5,3π5 are
Supplementary angles, so
sin4π5=sin(π−π5)=sinπ5
Similarly,
sin3π5=sin2π5
So,
sinπ5sin2π5sin3π5sin4π5=sin2π5sin22π5.....(i)
We know that,
sinπ5=√10−2√54
sin2π5=sin(π2−π10)=cosπ10=√10+2√54
From(i)sin2π5sin22π5=(√10−2√54)2(√10+2√54)2=(√100−2016)2=(4√516)2=516