The value of sin(sinâ113+secâ13)+cos(tanâ112+tanâ12) is
1
2
3
4
sin(sin−1(13)+sec−1(3))+cos(tan−1(12)+tan−1(2)) =sin(sin−1(13)+cos−1(13))+cos(tan−1(12))+cot−1(12)=sinπ2+cos (∵sin−1x+cos−1x=π2 and tan−1x+cos−1x=π2)=1
Find the value of sin(2tan−113)+cos(tan−1 2√2).
The value of Sin(2tan-11/3)+cos(tan-12√2) is?