wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of sinπ14sin3π14sin5π14sin7π14sin9π14sin11π14sin13π14 is equal to


A

18

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

116

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

132

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

164

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D

164


Step 1: Simplify the expression by the formula sinπ-θ=sinθ

The given trigonometric expression: sinπ14sin3π14sin5π14sin7π14sin9π14sin11π14sin13π14.

sinπ14sin3π14sin5π14sin7π14sin9π14sin11π14sin13π14=sinπ14sin3π14sin5π14sinπ2sinπ-5π14sinπ-3π14sinπ-π14=sinπ14sin3π14sin5π141sin5π14sin3π14sinπ14sinπ-θ=sinθ=sinπ14sin3π14sin5π142

Step 2: Simplify the expression by the formula sinπ2-θ=cosθ

sinπ14sin3π14sin5π14sin7π14sin9π14sin11π14sin13π14=sinπ14sin3π14sin5π142=sinπ2-3π7sinπ2-2π7sinπ2-π72=cos3π7cos2π7cosπ72sinπ2-θ=cosθ=cosπ-4π7cos2π7cosπ72=-cos4π7cos2π7cosπ72cosπ-θ=-cosθ=cos4π7cos2π7cosπ72

Step 3: Simplify the expression by the formula sin2A=2sinAcosA

sinπ14sin3π14sin5π14sin7π14sin9π14sin11π14sin13π14=cos4π7cos2π7cosπ72=14sin2π72sinπ7cosπ7cos2π7cos4π72=14sin2π7sin2π7cos2π7cos4π72sin2A=2sinAcosA=116sin2π72sin2π7cos2π7cos4π72=116sin2π7sin4π7cos4π72=164sin2π72sin4π7cos4π72=164sin2π7sin8π72=164sin2π7sinπ+π72=164sin2π7-sinπ72sinπ+θ=-sinθ=164

Therefore, the value of sinπ14sin3π14sin5π14sin7π14sin9π14sin11π14sin13π14 is equal to 164.

Hence, the correct option is (D).


flag
Suggest Corrections
thumbs-up
99
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Adaptive Q9
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon