The value of sinπ16sin3π16sin5π16sin7π16 is
116
216
18
28
The explanation for the correct option
Step 1 . Reduction of the trigonometric function
The given trigonometric expression: sinπ16sin3π16sin5π16sin7π16.
sinπ16sin3π16sin5π16sin7π16=142sinπ16sin7π162sin3π16sin5π16=14cos7π16-π16-cos7π16+π16cos5π16-3π16-cos5π16+3π16∵cosA-B-cosA+B=2sinAsinB=14cos6π16-cos8π16cos2π16-cos8π16=14cos3π8-cosπ2cosπ8-cosπ2
Step 2. Further reduction
∴14cos3π8-cosπ2cosπ8-cosπ2=14cos3π8-0cosπ8-0=14cos3π8cosπ8=18×2cos3π8cosπ8=18cos3π8+π8+cos3π8-π8∵cosA+B+cosA-B=2cosAcosB=18cosπ2+cosπ4=180+12=182=28×2=216
Therefore, the value of sinπ16sin3π16sin5π16sin7π16 is equal to 216.
Hence, the correct option is (B).
Study the pattern and answer the following:
18×1=18
18×2=36 (add 2 tens and 2ones less than 18i.e. 20+16)
18×3=54 (add 2 tens and 2ones less than 36i.e. 20+34)
18×4=72 (add 2 tens and 2ones less than 54i.e. 20+52)
Now, continue this pattern
18×5=.........18×6=.........18×7=.........18×8=.........18×9=.........18×10=.........