The value of sin θ+cos θ will be greatest when
θ=30∘
θ=45∘
θ=60∘
θ=90∘
Let f(x)=sin θ+cos θ=√2sin(θ+π4)But−1≤sin(θ+π2)≤1⇒−√2≤√2sin(θ+π4)≤√2.
Hence the maximum value of (sin θ+cos θ)
i.e., of √2 sin(θ+π4)=√2.∴ sin(θ+π4)=1⇒ sin(θ+π4)=sin π2⇒θ+π4=π2⇒θ=π4=45∘
Find the value of expression sin(−θ)+cos(−θ)+sec(−θ) +sin(π−θ)+cos(π−θ)+sec(π−θ)