The value of sincot−1 tancos−1x is equal to
[Bihar CEE 1974]
x
Let cos−1x=θ⇒x=cos θ⇒secθ=1x
⇒tanθ=√sec2θ−1=√12−1=1x√1−x2
Now sin cot−1tanθ=sin cot−1(1x√1−x2)
Again, putting x=sinθ
sin cot−1(1x√1−x2)=sin cot−1(√1−sin2θsinθ)
=sin cot−1(cotθ)=sinθ=x.