The value of √5+2√6 is
(a)√5+√6 (b)√5−√6 (c)√3+√2 (d)√3−√2
5+2√6=2+3+2×√2×√3
This is of the form of a2+b2+2ab=(a+b)2
√22+√32+2×√2×√3=(√2+√3)2
So, √5+2√6=√(√2+√3)2=√2+√3
Hence, the correct answer is the option (c)
Pick out the value of ‘y’ from the following
(1) 4 ⊕ y = 0 (mod 5)
(a) 0 (b) 1 (c) 4 (d) 5
(2) 3 ⊕ y = 2 (mod 6)
(a) 4 (b) 2 (c) 5 (d) 6
(3) 2 y = 1 (mod 5)
(a) 2 (b) 5 (c) 6 (d) 3
(4) y ⊗ y = 1 (mod 8)
(a) 6 (b) 3 (c) 8 (d) 4