The correct option is C 1
⎷(2√7−3√3)12010(55+12√21)14020
=
⎷(2√7−3√3)12010((2√7)2+(3√3)2+2×2√7×3√3)14020
=√(2√7−3√3)12010(2√7+3√3)24020
=
⎷(2√7−3√3)12010(2√7+3√3)12010
=
⎷[(2√7−3√3)(2√7+3√3)]12010
=√(28−27)12010
=(1)14020=1
Hence, the correct answer is option (c).