Trigonometric Ratios of Compound Angles: Tangent and Cotangent Functions
The value of∑...
Question
The value of ∑13k=11sin(π4+(k−1)π)6)sin(π4+kπ6)
is equal to
A
3−√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2(√3−1)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2(3−√3)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2(2−√3)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B2(√3−1) The value of ∑13k=11sin(π4+(k−1)π6)sin(π4+kπ6)∑13k=11sinπ6⎡⎢
⎢
⎢
⎢⎣sin{π4+kπ6−(π4+(k−1)π6)}sin(π4+(k−1)π6))sin(π4+kπ6)⎤⎥
⎥
⎥
⎥⎦∑13k=12[cot(π4+(k−1)π6)−cot(π4+kπ6)]=2[{cotπ4−cot(π4+π6)}+{cot(π4+π6)−cot(π4+2π6)}+…+{cot(π4+12π6)−cot(π4+13π6)}]=2[cotπ4−cot(π4+13π6)]=2[1−cot5π12]=2[1−(√3−1√3+1)]=2[1−(2−√3)]=2(√3−1)