The value of ∑6k=1sin(2kπ7)+icos(2kπ7) is
w=∑6k=1sin(2kπ7)+icos(2kπ7)=i∑6k=1cos(2kπ7)−isin(2kπ7)
Let A=2π7
⇒w=i∑6k=1e−ikA=i∑6k=1(e−iA)k
Let a=e−iA
⇒w=i∑6k=1ak=ia(a6−1a−1)=ie−iA⎛⎝(e−iA)6−1e−iA−1⎞⎠
⇒w=ie−iA(1−cos6A+isin6A1−cosA+isinA)=ie−iAsin3AsinA2⎛⎜
⎜
⎜⎝sin3A+icos3AsinA2+icosA2⎞⎟
⎟
⎟⎠
⇒w=ie−iAsin3AsinA2⎛⎜
⎜
⎜⎝cos3A−isin3AcosA2−isinA2⎞⎟
⎟
⎟⎠=ie−iAsin3AsinA2e−i3AeiA2
⇒w=ie−i7A2sin3AsinA2
⇒w=ie−iπsin6π7sinπ7=i(cosπ−isinπ)sin6π7sinπ−π7 ...{ ∵A=2π7}
⇒w=−i
Hence, option 'C' is correct.