1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Range of a Function
The value of ...
Question
The value of
∑
n
k
=
1
sin
−
1
(
√
k
−
√
k
−
1
√
k
(
k
+
1
)
)
is
A
tan
−
1
√
n
+
π
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
tan
−
1
√
n
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
tan
−
1
√
n
−
1
−
π
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
tan
−
1
√
n
To find
n
∑
k
=
1
sin
−
1
(
√
k
−
√
k
−
1
√
k
(
k
+
1
)
)
Let
t
k
=
sin
−
1
(
√
k
−
√
k
−
1
√
k
(
k
+
1
)
)
=
sin
−
1
(
1
√
k
√
k
k
+
1
−
1
√
k
+
1
√
k
−
1
k
)
=
sin
−
1
(
1
√
k
√
1
−
1
k
+
1
−
1
√
k
+
1
√
1
−
1
k
)
t
k
=
sin
−
1
(
1
√
k
)
−
sin
−
1
(
1
√
k
+
1
)
Now,
n
∑
k
=
1
sin
−
1
(
√
k
−
√
k
−
1
√
k
(
k
+
1
)
)
=
sin
−
1
(
1
)
−
sin
−
1
(
1
√
2
)
+
sin
−
1
(
1
√
2
)
−
sin
−
1
(
1
√
3
)
+
.
.
.
.
.
.
.
sin
−
1
(
1
√
n
)
−
sin
−
1
(
1
√
n
+
1
)
=
sin
−
1
(
1
)
−
sin
−
1
(
1
√
n
+
1
)
=
π
2
−
sin
−
1
(
1
√
n
+
1
)
=
cos
−
1
(
1
√
n
+
1
)
=
tan
−
1
√
n
Suggest Corrections
0
Similar questions
Q.
∑
n
r
=
1
s
i
n
−
1
(
√
r
−
√
r
−
1
√
r
(
r
+
1
)
)
is equal to