∑ni=1∑ij=1∑jk=11=∑ni=1∑ij=1j=∑ni=1(1+2+3+......+11i)=∑ni=1(i(i+1)2)=∑((i2)2)+∑i=(n(n+1)(2n+1)12)+(n(n+1)2)=(n(n+1)2)[((2n+1)+66)]=(n(n+1)(2n+7)12)