The value of n∑i=1i∑j=1j∑k=11=220 value if n is.
∑ni=1∑ij=1∑jk=11=220
∑ni=1∑ij=1(1+1+....jtimes)=220
∑ni=1∑ij=1(j)=220
∑ni=1(1+2+3+.......+i)=220
∑ni=1(i(i+1)2)=220
(12)∑ni=1(i2+i)=220
(12)[(n(n+1)(2n+1)6)+(n(n+1)2)]=220
(12)(n(n+1)[(2n+1)+3])6)=220
n(n+1)(2n+4)=12⋅220
n(n+1)2(n+2)=12⋅220
n(n+1)(n+2)=6⋅220
n(n+1)(n+2)=6⋅2⋅10⋅11
n(n+1)(n+2)=10⋅11⋅12
∴n=10