The value of n∑r=0(2r+1)(nCr)2 is equal to :
(n+1). 2nCn
n∑r=0(2r+1)(nCr)2
= 2 n∑0rC2r+n∑0rC2r+2A+B
C0+C1+C2x2+...+Cnxn=(1+x)n
Differentiatingbg w.r.t x , we get
C1+2C2+3C3x2+....+nxn−1=n(1+x)n−1
Also C0xn+C1xn−1+C2xn−2+.....+Cn=(x+1)n
∴ C21+2C23+3C23+...+nC2n
= coeff. of xn−1 in n(1+x)2n−1
= n. 2n−1Cn−1
Also C20+C21+C22+...+C2n=2nCn
∴ 2A + B = 2n. 2n−1Cn−1+2nCn
= 2n. (2n−1)!(n−1)!n!+2n!n!n!=n.2nCn+2nCn
= (n+1) 2nCn
Alter: S = n∑r=02(n−r)+1(nCr)2
= n∑r=02(n−r)+1(nCn−r)2