The value of ∑nm−1tan−1(2mm4+m2+2) is,
∑nm−1tan−1(2mm4+m2+2),=∑nm−1tan−1tan−1(2m1+(m4+m2+1))
=∑nm−1tan−1(2m1+(m2+1)2−m2)
=∑nm−1tan−1(2m1+(m2+m+1).(m2−m+1))
=∑nm−1tan−1((m2+m+1)−(m2−m+1)1+(m2+m+1)(m2−m+1))
=∑nm−1tan−1{tan−1(m2+m+1)−tan−1(m2−m+1)}
={tan−1(3)−tan−1(1)}+{tan−1(7)−tan−1(3)}+⋯⋯+{tan−1(n2+n+1)−tan−1(n2−n−1)−tan−1(n2−n−1)}
=tan−1(n2+n+1)−tan−1(1)
=tan−1(n2+n+1−11+(n2+n+n+1))=tan−1(n2+nn2+n+2)