The correct option is C 9n−2a2n+14
(1+x+x2)2n=a0+a1x+a2x2...a4nx4n
We know that a4n−r=ar
For x=1, we get
32n=a0+a1+a2...a4n ...(i)
For x=−1, we get
1=a0−a1+a2...a4n ...(ii)
Adding i and ii we get
9n+1=2[a0+a2+a4+a6..a4n]
Applying ar=a4n−r we get
9n+12=2[a0+a2+a4+a6...a2n−r]+a2n
9n+1−2a2n4=a0+a2+a4+a6...a2n−r