The value of ∑nr=1(−1)r−1(1+12+13+....+1r)nCr is equal to
1n
∑nr=1(−1)r−1⋅nCr(1+12+13+....+1r)
=∑nr=1(−1)r−1⋅nCr⋅[x+x22+x33+....+xrr]10
=∑nr=1(−1)r−1⋅nCr∫10(1+x+x2+...+xr−1dx)
=∑nr=1(−1)r−1⋅nCr∫10(1−xr1−x)dx
=∫10∑nr=1(−1)r−1⋅nCr−(−1)r−1⋅nCrxr1−xdx
=∫10∑nr=1(−1)r−1⋅nCr−∑nr=1(−1)r−1⋅nCrxr1−xdx
Now, ∑nr=1(−1)r−1⋅nCr=nC1−nC2+nC3−nC4+⋯=nC0−[nC0−nC1+nC2−nC3+nC4−⋯]=1−0=1
Also, ∑nr=1(−1)r−1⋅nCrxr=nC1x−nC2x2+nC3x3−⋯+(−1)r−1nCnxn=nC0−[nC0−nC1x+nC2x2−nC3x3+⋯+(−1)r−1nCnxn]=1−(1−x)n
∴∑nr=1(−1)r−1(1+12+13+....+1r)nCr=∫101−1+(1−x)n1−xdx=∫10(1−x)n−1dx=1n