The correct option is C 2n−1+(−1)n
Δ=∑nr=2(−2)r∣∣
∣∣n−2Cr−2n−2Cr−1n−2Cr−3112−10∣∣
∣∣
On expanding , we get
=∑nr=2(−2)r[n−2Cr−2+2n−2Cr−1+n−2Cr]
=∑nr=2(−2)r[n−2Cr−2+n−2Cr−1+n−2Cr−1+n−2Cr]
=∑nr=2(−2)r[n−1Cr−1+n−1Cr]
=∑nr=2(−2)r[nCr]
Δ=(−2)2nC2+(−2)3nC3+......+(−2)nnCn .....(2)
Now, we will expand (1−2)n
(1−2)n=nC0+nC1(−2)+nC2(−2)4+nC3(−2)3+.....nCn(−2)n
⇒(−1)n−1+2n=nC2(−2)4+nC3(−2)3+.....nCn(−2)n
Using this in (1), we get
Δ=2n−1+(−1)n