The correct option is B π2−cot−12
Let S=7+19+39+67+⋯+Tn
S= 0+7+19+39+67+⋯+Tn−1+Tn
Subtracting the above equations, we get
Tn=7+12+20+28+⋯+(Tn−Tn−1)
=7+n−12[24+8(n−2)]
=4n2+3
Now, T′n=tan−1(44n2+3)=tan−1⎛⎜
⎜
⎜⎝1n2+34⎞⎟
⎟
⎟⎠
=tan−111+(n2−14)
=tan−1⎡⎢
⎢
⎢
⎢⎣(n+12)−(n−12)1+(n+12)(n−12)⎤⎥
⎥
⎥
⎥⎦
=tan−1(n+12)−tan−1(n−12)
Hence, S∞=∞∑n=1T′n=π2−tan−112
=π2−cot−12