The value of tan−1(mn)−tan−1(m−nm+n) is
We have,
tan−1(mn)−tan−1(m−nm+n)
⇒tan−1⎛⎜ ⎜⎝mn−m−nm+n1+mn×m−nm+n⎞⎟ ⎟⎠[∵tan−1x−tan−1y=tan−1(x−y1+xy)]
⇒tan−1⎛⎜ ⎜ ⎜ ⎜ ⎜⎝m(m+n)−n(m−n)n(m+n)n(m+n)+m(m−n)n(m+n)⎞⎟ ⎟ ⎟ ⎟ ⎟⎠
⇒tan−1(m2+mn−mn+n2mn+n2+m2−mn)
⇒tan−1(m2+n2n2+m2)
⇒tan−1(1)
⇒tan−1(tanπ4)
⇒π4
Hence, this is the answer.