By identity, tan(2A)=2×tan (A)1−tan2 A
⇒(12)×tan(2A)=tan (A)1−tan2A
⇒ Left side is: tan−1{tan (A)(1−tan2A)}+tan−1{1tan (A)}+tan−1{1tan3A}
This is of the form tan−1x+tan−1y+tan−1z,wherex={tan (A)(1−tan2A)}
Y=1tan (A) and z=1tan3A
Also, tan−1x+tan−1y+tan−1z=tan−1{(x+y+z−xyz)(1−xy−yz−zx)}
So, x+y+z−xyz={tan (A)(1−tan2A)}+1tan (A)+1tan3A−1{tan A×(1−tan2A)}
Taking LCM and simplifying, {tan4A+tan2A−tan4A+1−tan2A−1}{tan A×(1−tan2A)}
=0tan A×(1−tan2A)=0
Hence, tan−1x+tan−1y+tan−1z=0
⇒tan−1{tan (A)(1−tan2A)}+tan−1{1tan (A)}+tan−1{1tan3A}=0 [Proved]