The correct option is C π
Let S=tan−1√a(a+b+c)bc+tan−1√b(a+b+c)ca+tan−1√c(a+b+c)ab
Let x=√a(a+b+c)bc, y=√b(a+b+c)ca and z=√c(a+b+c)ab
x+y+z=√a+b+c(√abc+√bca+√cab)
=√a+b+c(a+b+c√abc)=(a+b+c)3/2(abc)1/2
xyz=√a(a+b+c)bc⋅√b(a+b+c)ca⋅√c(a+b+c)ab=(a+b+c)3/2(abc)1/2
∴x+y+z=xyz⇒S=π