The value of tan20°+2tan50°-tan70° is
1
0
tan50°
None of these.
Explanation of the correct option
The given trigonometric expression: tan20°+2tan50°-tan70°.
tan50°=tan70°-20°⇒tan50°=tan70°-tan20°1+tan70°tan20°∵tanA-B=tanA-tanB1+tanAtanB⇒tan50°=tan70°-tan20°1+tan90°-20°tan20°⇒tan50°=tan70°-tan20°1+cot20°tan20°∵tan90°-x=cotx⇒tan50°=tan70°-tan20°1+1tan20°×tan20°∵cotx=1tanx⇒tan50°=tan70°-tan20°1+1⇒tan50°=tan70°-tan20°2⇒2tan50°=tan70°-tan20°⇒tan20°+2tan50°-tan70°=0
Hence, option B is correct .