The correct option is A 1 and 0 respectively
i) tan48∘.tan23∘.tan42∘.tan67∘
We know that, cot(90∘−θ)=tanθ
∴tan48∘.tan23∘.tan42∘.tan67∘
= tan48∘.tan23∘.cot(90∘−42∘).tan(90∘−67∘)
= tan48∘.tan23∘.cot48∘.cot23∘
We also know that, tanθ×cotθ=1
∴tan48∘.tan23∘.cot48∘.cot23∘
= tan48∘.cot48∘.tan23∘.cot23∘
= 1×1
= 1
ii) cos38∘.cos52∘−sin38∘.sin52∘
We know that, cosθ=sin(90∘−θ) and cosθ=sin(90∘−θ)
∴cos38∘.cos52∘−sin38∘.sin52∘
= cos38∘.sin(90∘−52∘)−sin38∘.cos(90∘−52∘
= cos38∘.sin38∘−sin38∘.cos38∘
= 0