The value of tan{cos−1(45)+sin−1(2√13)} is
Prove that:(i) 13+√7+1√7+√5+1√5+√3+1√3+1=1(ii) 11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=2
If we consider only the principle values of the inverse trigonometric functions, then the value of tan(cos−115√2−sin−14√17)