The correct option is C π
We have
2 sinx2cos x=sin3x2−sinx2
2 sinx2cos 2x=sin5x2−sin3x2
⋯⋯⋯⋯⋯⋯⋯⋯
2 sinx2 cos nx=sin(n+12)x−sin(n−12)x
Adding the above n equations we get
2 sinx2(cosx+cos 2x+⋯+con nx)
=sin(n+12)x−sinx2
⇒sin(n+12)xsin x2−1=2(cos x+cos 2x+⋯cos nx)
⇒∫π0sin(n+12)xsin x2dx−∫π01dx=0
⇒∫π0sin(n+12)xsin x2dx−π=0
∴∫π0sin(n+12)xsin x2dx=π