The correct option is D (1,−1)
Simplifying the above expression gives us
limx→∞(x2+1−αx(x+1)−β(x+1)x+1)
=limx→∞(x2(1−α)−x(α+β)+1−β)x+1)
=0 implies that Numerator<Denominator.
Hence coefficient of x2 will be 0. Therefore α=1.
Hence
limx→∞(−x(1+β)+1−β)x+1)=0
Applying L'Hopital's Rule we get
limx→∞(−(1+β)1)=0
Or
β+1=0
Or
β=−1.
Hence
(α,β)=1,−1