The value of the contour integral
12πj∮(z+1z)2dz
evaluated over the unit circle |z|=1 is
The value of the contour integral
12πj∮(z+1z)2dz,|z|=1
I=12πj∮(z+1z)2dz
I=12πj∮(z+z2+1z)2dz
There are two poles at z=0, (lying inside the contour)
so, by using ∮f(z)(z−zo)ndz=1(n−1)!dn−1dzn−1f(z)
I=(12πj)(11!)ddz((z2+1)2)
I=12πJ(2(z2+1)(2z))|z=0
I=4z(z2+1)|z=0
I=0