The correct option is B π√2
I=∫π20√tanxdx..........(1)
I=∫π20√cotxdx.......(2)
Adding equations(1) and (2), we get
2I=∫π20(√tanx+√cotx)dx
=−√2∫π20sinx+cosx√sin2xdx
−√2∫π20sinx+cosx√1−(sinx−cosx)2dx
√2∫1−1dt√1−t2 (where sinx−cosx=t)
=2√2∫10dt√1−t2=√2π
or
I=π√2