wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of the definite integral π40ln(1+tanx)dx is:

A
π4ln2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π8ln2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
πln2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
ln2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B π8ln2
Let I=π40ln(1+tanx)dx(i)
Using the property:
baf(x) dx=baf(a+bx) dx
I=π40ln[1+tan(π4x)]dx
I=π40ln⎢ ⎢1+tanπ4tanx1+tanπ4tanx⎥ ⎥dx
I=π40ln[1+1tanx1+tanx]dx
I=π40ln2(1+tanx)dx
I=π40ln2 dxπ40ln(1+tanx)dx
I=π40ln2 dxI [From(i)]
2I=(ln2)[x]π40
2I=π4ln2
I=π8ln2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon