The value of the definite integral π4∫0ln(1+tanx)dx is:
A
π4ln2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π8ln2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
πln2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
ln2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bπ8ln2 Let I=π4∫0ln(1+tanx)dx⋯(i)
Using the property: b∫af(x)dx=b∫af(a+b−x)dx ⇒I=π4∫0ln[1+tan(π4−x)]dx ⇒I=π4∫0ln⎡⎢
⎢⎣1+tanπ4−tanx1+tanπ4tanx⎤⎥
⎥⎦dx ⇒I=π4∫0ln[1+1−tanx1+tanx]dx ⇒I=π4∫0ln2(1+tanx)dx ⇒I=π4∫0ln2dx−π4∫0ln(1+tanx)dx ⇒I=π4∫0ln2dx−I [From⋯(i)] ⇒2I=(ln2)[x]π40 ⇒2I=π4ln2 ⇒I=π8ln2