The correct option is B π√2
I=π/2∫0√tanx dx⋯(1)
Using property,
⇒I=π/2∫0√cotx dx⋯(2)
Adding (1) and (2),
2I=π/2∫0√tanx+√cotx dx⇒I=1√2π/2∫0sinx+cosx√sin2x dx⇒I=1√2π/2∫0sinx+cosx√1−(sinx−cosx)2 dx
Let,
sinx−cosx=t⇒(cosx+sinx)dx=dt
I=1√21∫−1dt√1−t2⇒I=1√2[sin−1t]1−1=π√2