The value of the definite integral π∫0πtanxsecx+tanxdx is equal to
A
π(1−π)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π(π−2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
π(2−π)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
π(π−1)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bπ(π−2) tanxsecx+tanx=tanx(secx−tanx)
Let I=π∫0πtanxsecx+tanxdx ⇒I=π∫0π(secxtanx−tan2x)dx =π∫0π(secxtanx+1−sec2x)dx =π[secx+x−tanx]π0 =π(π−2)