The correct option is B cos2−cos4
We have
I=4∫2(x(3−x)(4+x)(6−x)(10−x)+sinx)dx ⋯(1)
Now, replace x with 6−x
I=4∫2(6−x)(3−(6−x))(4+(6−x))(6−(6−x))(10−(6−x))+sin(6−x))dx
=4∫2((6−x)(x−3)(10−x)x(4+x)+sin(6−x))dx ⋯(2)
On adding (1) and (2), we get
2I=4∫2(sinx+sin(6−x))dx
=[−cosx+cos(6−x)]42
=−cos4+cos2+cos2−cos4
=2(cos2−cos4)
Hence, I=cos2−cos4