The correct option is D π12
Let I=5π/24∫π/24dx1+(tan2x)1/3 …(1)
applying ∫baf(x)dx=∫baf(a+b−x)dx,
we get
I=5π/24∫π/24dx1+(tan(π2−2x))1/3⇒I=5π/24∫π/24dx1+(cot2x)1/3⇒I=5π/24∫π/24(tan2x)1/31+(tan2x)1/3dx …(2)
By (1)+(2)
2I=5π/24∫π/241+(tan2x)1/31+(tan2x)1/3dx⇒5π/24∫π/241dx⇒2I=5π24−π24⇒I=π12