The correct option is B π2√2
Let I=π/4∫−π/4dx(1+excosx)(sin4x+cos4x) ⋅(1)
Applying b∫af(x)dx=b∫af(a+b−x)dx
∴I=π/4∫−π/4dx(1+e−xcosx)(sin4x+cos4x)
⇒I=π/4∫−π/4excosxdx(1+excosx)(sin4x+cos4x) ⋅(2)
Adding (1) and (2), we get
2I=π/4∫−π/4dx(sin4x+cos4x)
2I=π/4∫−π/4sec2x(1+tan2x)dxtan4x+1
Put tanx=t
⇒sec2x dx=dt
∴2I=1∫−1(1+t21+t4)dt
⇒I=1∫01+t21+t4dt
⇒I=1∫01+1t2t2+1t2dt
⇒I=1∫01+1t2(t−1t)2+2dt
Put t−1t=K
⇒(1+1t2)dt=dK
∴I=0∫−∞dKK2+2
⇒I=1√2[tan−1k√2]0−∞
⇒I=1√2(0+π2)
∴I=π2√2