The correct option is
C 16∫π/20sinxsin2xsin3xdx
⇒12∫π/202sinxsin2xsin3xdx
⇒12∫π/202sinxsin3xsin2xdx
We know that 2sinAsinB=cos(A−B)−cos(A+B)
⇒12∫π/20(cos(x−3x)−cos(x+3x))sin2xdx
⇒12∫π/20(cos2x−cos4x)sin2xdx
⇒12∫π/20sin2xcos2xdx−12∫π/20sin2xcos4xdx
⇒14∫π/202sin2xcos2xdx−14∫π/202sin2xcos4xdx
We know that 2sinAcosB=sin(A+B)+sin(A−B)
⇒14∫π/20(sin(2x+2x)+sin(2x−2x))dx−14∫π/20(sin(2x+4x)+sin(2x−4x))dx
⇒14∫π/20sin4xdx−14∫π/20(sin6x−sin2x)dx
⇒14∫π/20sin4xdx−14∫π/20sin6xdx+14∫π/40sin2xdx
⇒14[sin4x4]π/40−14[−sin6x6]π/40+14[−cos2x2]π/40
⇒−112+14=16