wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of the definite integral 11xIn(1x+2x+3x+6x)dx equals

A
In2+In32
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
In2+In33
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
In2+In3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
In2+In34
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C In2+In33
I=11xln(1x+2x+3x+2x.3x)dx
I=11xln[(1+2x).(1+3x)]dx
I=11xln(1+2x)dx+11xln(1+3x)dx
I1=11xln(1+2x)dx....(1)
Replace x by a+bx x
I111xln(1+2x2x)dx=11xln(1+2x)dx=11xln(1+2x)dx+11xln2xdx....(2)
Add (1) and (2)
2 I1=ln11x2dx
I1=ln22[x23]11=ln22×23=ln23
Similarly, I2=ln33
Thus I=I1+I2
=ln2+ln33 (B)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon