The correct option is B (a+b+c)3
Given that,
∣∣
∣∣a−b−c2a2a2bb−c−a2b2c2cc−a−b∣∣
∣∣
Applying R1→R1+R2+R3
=∣∣
∣∣a+b+ca+b+ca+b+c2bb−c−a2b2c2cc−a−b∣∣
∣∣
Taking (a+b+c) common from the first row,
=(a+b+c)∣∣
∣∣1112bb−c−a2b2c2cc−a−b∣∣
∣∣
[ Applying C1→C1−C3 and C2→C2−C3]
=(a+b+c)∣∣
∣∣0010−(a+b+c)2ba+b+ca+b+cc−a−b∣∣
∣∣
Expanding along R1
(a+b+c)[1×0+(a+b+c)2]=(a+b+c)3