∣∣
∣∣bccaabpqr111∣∣
∣∣=1(a×c×r−a×b×q)+1(a×b×p−b×c×r)+1(b×c×q−p×c×a)=a×c(r−p)+a×b(p−q)+b×c(q−r)
Now given a,b and c are pth,qth and rth terms of a H.P then 1a,1band1c are in A.P
Let x be the first term in A.P and common difference be d.
Tp=x+(p−1)×d=1a..........(1)Tq=x+(q−1)×d=1b..........(2)Tr=x+(r−1)×d=1c..........(3)
Subtract (1) and (2) we get
(p−q)×d=1a−1b(p−q)×d=b−aab⟹(p−q)×ab=b−ad..........(4)
Subtract (3) and (1) we get
(r−p)×ac=a−cd..........(5)
Subtract (2) and (1) we get
(q−r)×bc=c−bd..........(6)
Add (4) , (5) and (6) we get
(p−q)×ab+(r−p)×ac+(q−r)×bc=b−a+a−c+c−bd=0
Hence determinant ∣∣
∣∣bccaabpqr111∣∣
∣∣=0