The correct option is A zero for all values of P, Q, R, A, B, and C.
Let Δ=∣∣
∣
∣∣cos(A−P)cos(A−Q)cos(A−R)cos(B−P)cos(B−Q)cos(B−R)cos(C−P)cos(C−Q)cos(C−R)∣∣
∣
∣∣
⇒ Δ=∣∣
∣
∣∣cos A cos P+sin A sin Pcos(A−Q)cos(A−R)cos B cos P+sin B sin Pcos(B−Q)cos(B−R)cos C cos P+sin C sin Pcos(C−Q)cos(C−R)∣∣
∣
∣∣
⇒ Δ=∣∣
∣
∣∣cos A cos Pcos(A−Q)cos(A−R)cos B cos Pcos(B−Q)cos(B−R)cos C cos Pcos(C−Q)cos(C−R)∣∣
∣
∣∣+∣∣
∣
∣∣sin A sin Pcos(A−Q)cos(A−R)sin B sin Pcos(B−Q)cos(B−R)sin C sin Pcos(C−Q)cos(C−R)∣∣
∣
∣∣
⇒ Δ=cos P∣∣
∣
∣∣cos Acos(A−Q)cos(A−R)cos Bcos(B−Q)cos(B−R)cos Ccos(C−Q)cos(C−R)∣∣
∣
∣∣+sin P∣∣
∣
∣∣sin Acos(A−Q)cos(A−R)sin Bcos(B−Q)cos(B−R)sin Ccos(C−Q)cos(C−R)∣∣
∣
∣∣
Applying C2→C2−C1 cos Q, C3→C3−C1 cos R in first determinant and C2→C2−C1 sin Q and in second determinant
⇒ Δ=cos P∣∣
∣∣cos Asin A sin Qsin A sin Rcos Bsin B sin Qsin B sin Rcos Csin C sin Qsin C sin R∣∣
∣∣+sin P∣∣
∣∣sin Acos A cos Qcos A cos Rsin Bcos B cos Qcos B cos Rsin Ccos C cos Qcos C cos R∣∣
∣∣Δ=cos P sin Q sin R∣∣
∣∣cos Asin Asin Acos Bsin Bsin Bcos Csin Csin C∣∣
∣∣+sin P cos Q cos R∣∣
∣∣sin Acos Acos Asin Bcos Bcos Bsin Ccos Ccos C∣∣
∣∣
Δ = 0 + 0 = 0