The value of the limn→∞∫10x10sin(nx)dx equals
0
110!
π2
1
IN=[−cos(nx)x10n]10+10∫10cos(nx)x9dxn =0+10n⎡⎣[sin(nx)x9n]10−9n∫10sin(nx)x8dxn⎤⎦ =−10×9n2[∫10sin(nx)x8dx] =10!n10[∫10sin(nx)dx] =0 as Denominator ⟶∞