The correct option is B n!en
limx→0(ex+2xex+3x.ex+....+nxexn)n/x
y=limx→0(ex)n/x(1x+2x+3x+....+nxn)n/x
y=enlimx→0((1x+2x+3x+....+nxn)1/x)n
We know that
limx→0(ax1+ax2+ax3+.....+axnn)1x=(a1a2a3.....an)1/n
Hence, the given limit becomes
=en((1.2.3......n)1/n)n
=en((n!)1/n)n
=en.n!