The value of the expression
2(1+ω)(1+ω2)+3(2ω+1)(2ω2+1)+4(3ω+1)(3ω2+1)+⋯+(n+1)(nω+1)(nω2+1)
where ω is complex cube root of unity, is
2(1+ω)(1+ω2)+3(2ω+1)(2ω2+1)+4(3ω+1)(3ω2+1)+⋯+(n+1)(nω+1)(nω2+1)
We know that,
(a+b)(a+bω)(a+bω2)=(a+b)(a2−ab+b2)
=a3+b3
So expression becomes,
(13+13)+(23+13)+⋯+(n3+13)
=(n(n+1)2)2+n
Hence, option C.