The correct option is B n2(n+1)24+n
Let w be the cube root of unity.
∴w3=1&1+w+w2=0
z=2(1+w)(1+w2)+3(1+2w)(1+2w2)+4(1+3w)(1+3w2).....+(n+1)(1+nw)(1+nw2)
⇒z=∑nr=1(r+1)(1+rw)(1+rw2)=∑nr=1(r+1)[1+r(w+w2)+r2w3] ...{∵w3=1&1+w+w2=0}
⇒z=∑nr=1(r+1)(1−r+r2)
⇒z=∑nr=1(r3+1)
⇒z=n2(n+1)24+n
Hence, option 'B' is correct.