The value of the expression C447+∑j=15C52-j3 is
C451
C452
C352
C453
Explanation for correct option:
C447+∑j=15C52-j3=C447+51C3+50C3+49C3+48C3+47C3
We know thatnCr+nCn-r=n+1Cr
∴C447+51C3+50C3+49C3+48C3+47C3=C447+47C3+48C3+49C3+50C3+51C3=48C4+48C3+49C3+50C3+51C3∵nCr+nCn-r=n+1Cr=49C4+49C3+50C3+51C3∵nCr+nCn-r=n+1Cr=50C4+50C3+51C3∵nCr+nCn-r=n+1Cr=51C4+51C3∵nCr+nCn-r=n+1Cr=52C4∵nCr+nCn-r=n+1Cr
Hence, option (B) is correct.