The value of the expression 2k(n0)(nk)−2k−1(n1)(n−1k−1)+2k−2(n2)(n−2k−2)..+(−1)k(nk)(n−k0) is
The value of∑n+1r=1(∑nk=1kCr−1) where r, k, n ϵ N is equal to
∞∑n=11(n+1)(n+2)(n+3)....(n+k) is equal to