The correct option is A 0.3
(0.3)13(127)14(9)16(0.81)23(0.9)23(3)−12(13)−2(243)−14
=(310)13(13)34(32)16(81100)23(910)23(3)−12(3−1)−2(35)−14
=(10)−13(3)13(3)−34(3)13(3)4×23(10−2)23(3)43×(10)−23×(3)−12×(3)2×(3)−54
=(3)13−34+13+83(10)−43−13(3)43−12+2−54×(10)−23
=(3)3112.(10)−53(3)1912(10)−23
=(3)3112−1912(10)53+23=31×10−1=310=0.3