2C2=3C3
Hence
2C2+3C2+4C2+...nC2
=3C3+3C2+4C2+...nC2
=4C3+4C2+5C2+...nC2 ...(nCr+nCr+1=n+1Cr+1).
:
:
nC3+nC2
=n+1C3
Hence
n+1C2+2n+1C3
=n+1C2+n+1C3+n+1C3
=n+2C3+n+1C3
=n(n+1)(n+2)6+(n−1)n(n+1)6
=(n)(n+1)[n+2+n−1]6
=n(n+1)(2n+1)6
Therefore k=1, m=1, p=2 and h=6
Hence
k+m+p+h
=10.